Terms in Time and Times in Context: A Graph-based Term-Time Ranking Model

Andreas Spitz, Jannik Strötgen, Thomas Bögel and Michael Gertz

Heidelberg University Institute of Computer Science Database Systems Research Group http://dbs.ifi.uni-heidelberg.de

spitz@informatik.uni-heidelberg.de

5th Temporal Web Analytics Workshop Florence, May 18, 2015

What happened on June 15, 1215?

A simple question. How simple is the answer?

With structured data: quite simple

Based on unstructured text data: much more challenging

Projection

Data Set and Approach

A corpus of all English Wikipedia articles:

- Only text is considered, no info-boxes
- 3,079,620 documents with time expressions

Problem statement, given such a corpus:

- Extract and normalize temporal expressions (dates)
- Find key terms that best summarize a given date

Outline

Outline of the approach:

- Represent date-term co-occurrences efficiently
 - Extract and normalize temporal expressions (dates)
 - Extract content words that co-occur with dates
 - Generate an efficient data structure
- Based on this representation
 - · Identify relevant terms for any given date
 - Identify similar dates for any given date
- Example applications

Extraction of Temporal Expressions

- Normalization, e.g., May 18, 2015 \rightarrow 2015-05-18
- Handling relative temporal expressions, e.g., in May
- Considering the document type

Source: Strötgen, Gertz Multilingual and Cross-domain Temporal Tagging (2013)

Projection

Coverage of Dates

We use a combination of dates of three granularities:

- YYYY-MM-DD (day)
- YYYY-MM (month)
- YYYY (year)

Percentage of dates that are included in the data per year

Extraction of Terms and Representation

For all sentences s in any Wikipedia document:

The Demolition of the Berlin Wall officially began on 13 June 1990.

Extraction of Terms and Representation

Identify/normalize dates and remove stop words

The Demolition of the Berlin Wall officially began on 13 June 1990.

Summary

Extraction of Terms and Representation

Create a bipartite graph $G_s = (T_s \cup D_s, E_s)$ with weights ω_s

Extraction of Terms and Representation

Satisfy the inclusion condition for dates

Extraction of Terms and Representation

Satisfy the inclusion condition for dates

Term-Ranking

Projection

Graph aggregation

÷

+

Aggregate the sentence-graphs G_s :

•
$$T := \bigcup T_s$$

• $D := \bigcup D_s$

•
$$E := \bigcup E_s$$

•
$$\omega(e) := \sum \omega_s(e)$$

We obtain $G = (T \cup D, E, \omega)$ with:

- |T| = 3,748,730 terms
- |D| = 210,375 dates
- |E| = 110, 639, 525 edges

Projection

ication

Summary

Formalising the Question

What happened on June 15, 1215?

Which terms in the graph co-occur in a significant manner with the date 1215-06-15?

We need a ranking-function from dates \boldsymbol{D} to a list of terms \boldsymbol{T}

- $r: D \to \mathbb{R}^{|T|}$
- r(d) := ranking of terms $t \in T$ by their significance for d

We need a ranking-function from dates \boldsymbol{D} to a list of terms \boldsymbol{T}

- $r: D \to \mathbb{R}^{|T|}$
- r(d) := ranking of terms $t \in T$ by their significance for d

Idea: adapt *tf-idf* to the bipartite graph

$$tf \text{-} idf := tf \cdot \log \frac{1}{df}$$

- tf: frequency of term in document
- df: fraction of documents that contain the term

How does this relate to the graph?

- Identify dates with documents, i.e., dates contain terms
- Term frequency given by edge weights: $tf(d,t)\approx \omega(d,t)$
- Inverse document frequency given by number of neighbours: $idf(t)\approx \frac{|D|}{deg(t)}$

$$tf\text{-}idf := tf \cdot \log \frac{1}{df} \qquad \Rightarrow \qquad tf\text{-}idf(d,t) := \omega(d,t)\log \frac{|D|}{deg(t)}$$

June 15, 1215

Query: "1215-06-15"

	tf-idf	ω	deg(t)
carta magna barons runnymede king oaths king's repudiation fealty john	79.7 71.2 46.9 40.5 20.4 17.1 15.1 13.6 12.4 11.8	14 14 10 6 12 3 5 2 2 2 11	709 1298 1928 247 38400 714 10200 231 424 71893

June 15, 1215

	tf-idf	ω	deg(t)
carta	79.7	14	709
magna	71.2	14	1298
barons	46.9	10	1928
runnymede	40.5	6	247
king	20.4	12	38400
oaths	17.1	3	714
king's	15.1	5	10200
repudiation	13.6	2	231
fealty	12.4	2	424
john	11.8	11	71893

Query: "1215-06-15"

On June 15, 1215 at Runnymede, King John of England and a council of rebellious barons agreed to the Magna Carta.

Projection

Summary

A Ranking for Dates

Ranking dates by term works analogously:

$$tf\text{-}idf(t,d) := \omega(t,d)\log \frac{|T|}{deg(d)}$$

Query: "Tsunami"

	tf-idf	ω	deg(t)	
2004	3097.2	1374	393475	
2011	2753.9	1313	460264	
2011-03	1878.5	464	65407	
2004-12-26	1658.0	238	3536	
2011-03-11	1474.2	226	5508	
2005	1030.6	476	430107	
2004-12	734.8	162	40186	
2005-01	465.5	102	39062	
2006	301.7	147	481555	
2010	295.2	148	510254	

Projection

Summary

A Ranking for Dates

Ranking dates by term works analogously:

$$tf\text{-}idf(t,d) := \omega(t,d)\log \frac{|T|}{deg(d)}$$

Ranking Nodes by Similarity Within a Set

Can we...

- ... create a ranking for dates by dates?
- ... or for terms by terms?

Ranking Nodes by Similarity Within a Set

Can we...

- ... create a ranking for dates by dates?
- ... or for terms by terms?

Formally this is a *one-mode projection* of the bipartite graph:

- Reduce graph to a single set of nodes T or D
- Connect nodes that share neighbours in the bipartite graph
- This results in a very dense graph

 \Rightarrow How can we identify relevant edges in the projection?

Projection

Summary

Cosine Similarity of Adjacency Vectors

In a lesson from *Collaborative Filtering*: use a cosine similarity of adjacency vectors

Ground truth: U.S. Election Days (1848 - 2013)

- Recurs annually
- Always on Tuesday after the first Monday in November (Nov 2 - Nov 8)
- Every four years: presidential election

Ground truth: U.S. Election Days (1848 - 2013)

- Recurs annually
- Always on Tuesday after the first Monday in November (Nov 2 - Nov 8)
- Every four years: presidential election

Expectation:

- For a given election day, election days in other years are ranked highly
- For presidential election days, other presidential election days are ranked highly

$\mathsf{Precision} \ \mathsf{at} \ k$

Motivation

Projection

Application

Summary

Area Under the ROC Curve

Practical Application: Hot Spots & Key Players

Here: approximation of countries' activity during given months

For each European country c,

- define its name, e.g. $t_n(c) = italy$,
- define the countries adjectival form, e.g. $t_a(c) = italian$,
- compute individual *tf-idf* scores for terms and combine.

$$act(c,d) := \frac{tf - idf(d, t_n(c)) + tf - idf(d, t_a(c))}{\max[tf - idf(d, \cdot)]}$$

Motivation

Projection

Application

Summary

Activity by Country During World War II

Motivation

Projection

Application

Summary

Activity by Country During World War II (2)

Summary

Approach:

- Extract dates and terms from unstructured text
- Construct a bipartite date-term graph
- Allows ranking dates / terms according to co-occurrences

Benefits:

- Simple measures already yield good results
- Efficient: 4GB Memory and real-time queries
- Flexibility of ranking methods

Ongoing Work

Query: "2016-05"

	ω
Multi-partite graphs: Dates Persons Locations	1
Terms as n-Grams	2
Ranking-Functions	3

		Summary

Thank you!

Questions?