Terms in Time and Times in Context:
 A Graph-based Term-Time Ranking Model

Andreas Spitz, Jannik Strötgen, Thomas Bögel and Michael Gertz

Heidelberg University Institute of Computer Science
Database Systems Research Group http://dbs.ifi.uni-heidelberg.de
spitz@informatik.uni-heidelberg.de

5th Temporal Web Analytics Workshop
Florence, May 18, 2015

What happened on June 15, 1215?

A simple question.
How simple is the answer?

With structured data: quite simple

Based on unstructured text data: much more challenging

Data Set and Approach

A corpus of all English Wikipedia articles:

- Only text is considered, no info-boxes
- $3,079,620$ documents with time expressions

Problem statement, given such a corpus:

- Extract and normalize temporal expressions (dates)
- Find key terms that best summarize a given date

Outline

Outline of the approach:

- Represent date-term co-occurrences efficiently
- Extract and normalize temporal expressions (dates)
- Extract content words that co-occur with dates
- Generate an efficient data structure
- Based on this representation
- Identify relevant terms for any given date
- Identify similar dates for any given date
- Example applications

Extraction of Temporal Expressions

- Normalization, e.g., May 18, $2015 \rightarrow 2015-05-18$
- Handling relative temporal expressions, e.g., in May
- Considering the document type
News 1998-04-18
\ldots for the United States,
he said today. ... On
May 22, 1995, Farkas was
made a brigadier general,
and the following year ...
However, cited by police in
December for driving under
the influence of alcohol ...

Narrative 2009-12-19 1979: Soviet invasion ... land in Kabul on December 25 ... they were complying with the 1978 Treaty of Friendship ... entered Afghanistan from the north on December 27. In the morning, the 103 rd ...

Source: Strötgen, Gertz Multilingual and Cross-domain Temporal Tagging (2013)

Coverage of Dates

We use a combination of dates of three granularities:

- YYYY-MM-DD (day)
- YYYY-MM (month)
- YYYY (year)

Percentage of dates that are included in the data per year

Extraction of Terms and Representation

For all sentences s in any Wikipedia document:

The Demolition of the Berlin Wall officially began on 13 June 1990.

Extraction of Terms and Representation

Identify/normalize dates and remove stop words

The Demolition of the Berlin|Wallofficially|began on 13 June 1990 .

Extraction of Terms and Representation

Create a bipartite graph $G_{s}=\left(T_{s} \cup D_{s}, E_{s}\right)$ with weights ω_{s}

The Demolition of the Berlin|Wallofficially began on 13 June 1990 .

Extraction of Terms and Representation

Satisfy the inclusion condition for dates

The Demolition of the Berlin|Wallofficially began on 13 June 1990 .

Extraction of Terms and Representation

Satisfy the inclusion condition for dates

The Demolition of the Berlin|Wallofficially began on 13 June 1990 .

Graph aggregation

Aggregate the sentence-graphs G_{s} :

- $T:=\bigcup T_{s}$
- $D:=\bigcup D_{s}$
- $E:=\bigcup E_{s}$
- $\omega(e):=\sum \omega_{s}(e)$

We obtain $G=(T \cup D, E, \omega)$ with:

- $|T|=3,748,730$ terms
- $|D|=210,375$ dates
- $|E|=110,639,525$ edges

Formalising the Question

What happened on June 15, 1215?

Which terms in the graph co-occur in a significant manner with the date 1215-06-15?

Ranking

We need a ranking-function from dates D to a list of terms T

- $r: D \rightarrow \mathbb{R}^{|T|}$
- $r(d):=$ ranking of terms $t \in T$ by their significance for d

Ranking

We need a ranking-function from dates D to a list of terms T

- $r: D \rightarrow \mathbb{R}^{|T|}$
- $r(d):=$ ranking of terms $t \in T$ by their significance for d

Idea: adapt $t f$-idf to the bipartite graph

$$
t f-i d f:=t f \cdot \log \frac{1}{d f}
$$

- $t f$: frequency of term in document
- df: fraction of documents that contain the term

Adapting tf-idf

How does this relate to the graph?

- Identify dates with documents, i.e., dates contain terms
- Term frequency given by edge weights: $t f(d, t) \approx \omega(d, t)$
- Inverse document frequency given by number of neighbours: $i d f(t) \approx \frac{|D|}{\operatorname{deg}(t)}$

$$
t f-i d f:=t f \cdot \log \frac{1}{d f} \quad \Rightarrow \quad t f-i d f(d, t):=\omega(d, t) \log \frac{|D|}{d e g(t)}
$$

June 15, 1215

Query: "1215-06-15"

	tf-idf	ω	deg (t)
carta	79.7	14	709
magna	71.2	14	1298
barons	46.9	10	1928
runnymede	40.5	6	247
king	20.4	12	38400
oaths	17.1	3	714
king's	15.1	5	10200
repudiation	13.6	2	231
fealty	12.4	2	424
john	11.8	11	71893

June 15, 1215

Query: "1215-06-15"

	tf-idf	ω	deg(t)
carta	79.7	14	709
magna	71.2	14	1298
barons	46.9	10	1928
runnymede	40.5	6	247
king	20.4	12	38400
oaths	17.1	3	714
king's	15.1	5	10200
repudiation	13.6	2	231
fealty	12.4	2	424
john	11.8	11	71893

On June 15, 1215 at Runnymede, King John of England and a council of rebellious barons agreed to the Magna Carta.

A Ranking for Dates

Ranking dates by term works analogously:

$$
t f-i d f(t, d):=\omega(t, d) \log \frac{|T|}{\operatorname{deg}(d)}
$$

Query: "Tsunami"

	$t f$-idf	ω	$\operatorname{deg}(t)$
2004	3097.2	1374	393475
2011	2753.9	1313	460264
$2011-03$	1878.5	464	65407
$2004-12-26$	1658.0	238	3536
$2011-03-11$	1474.2	226	5508
2005	1030.6	476	430107
$2004-12$	734.8	162	40186
$2005-01$	465.5	102	39062
2006	301.7	147	481555
2010	295.2	148	510254

A Ranking for Dates

Ranking dates by term works analogously:

$$
t f-i d f(t, d):=\omega(t, d) \log \frac{|T|}{\operatorname{deg}(d)}
$$

	Query: "Tsunami"			
		tf-idf	ω	deg(t)
03/11/2011, Japan	2004	3097.2	1374	393475
Tōhoku-Earthquake, Tsunami	2011	2753.9	1313	460264
	2011-03	1878.5	464	65407
12/26/2004, Indian Ocean	2004-12-26	1658.0	238	3536
Sumatra-Andaman Quake, Tsunami	2011-03-11	1474.2	226	5508
07/17/2006 Java	2005	1030.6	476	430107
Seaquake, Tsunami	2004-12	734.8 465.5	162	40186 39062
10/25/2010, Sumatra	2005-01	465.5 301.7	102	39062 481555
Earthquake, Tsunami	2010	295.2	148	510254

Ranking Nodes by Similarity Within a Set

Can we...

- ... create a ranking for dates by dates?
- ... or for terms by terms?

Ranking Nodes by Similarity Within a Set

Can we...

- ... create a ranking for dates by dates?
- ... or for terms by terms?

Formally this is a one-mode projection of the bipartite graph:

- Reduce graph to a single set of nodes T or D
- Connect nodes that share neighbours in the bipartite graph
- This results in a very dense graph
\Rightarrow How can we identify relevant edges in the projection?

Cosine Similarity of Adjacency Vectors

> In a lesson from Collaborative Filtering: use a cosine similarity of adjacency vectors

$$
\cos \left(t_{a}, t_{b}\right):=\frac{\sum t_{a_{i}} \cdot t_{b_{i}}}{} \quad \quad \begin{array}{cc|c|c|c|c|}
\mathrm{t}_{1} & \mathrm{~d}_{1} & \omega & & & \\
\hline
\end{array}
$$

Evaluation

Ground truth: U.S. Election Days (1848-2013)

- Recurs annually
- Always on Tuesday after the first Monday in November (Nov 2 - Nov 8)
- Every four years: presidential election

Evaluation

Ground truth: U.S. Election Days (1848-2013)

- Recurs annually
- Always on Tuesday after the first Monday in November (Nov 2 - Nov 8)
- Every four years: presidential election

Expectation:

- For a given election day, election days in other years are ranked highly
- For presidential election days, other presidential election days are ranked highly

Precision at k

$$
\operatorname{prec}_{k}:=\frac{\mid \text { Election days in top } k \text { ranks } \mid}{k}
$$

Area Under the ROC Curve

Practical Application: Hot Spots \& Key Players

Here: approximation of countries' activity during given months

For each European country c,

- define its name, e.g. $t_{n}(c)=i t a l y$,
- define the countries adjectival form, e.g. $t_{a}(c)=$ italian,
- compute individual $t f$-idf scores for terms and combine.

$$
\operatorname{act}(c, d):=\frac{t f-i d f\left(d, t_{n}(c)\right)+t f-i d f\left(d, t_{a}(c)\right)}{\max [t f-i d f(d, \cdot)]}
$$

Activity by Country During World War II

Activity by Country During World War II (2)

Summary

Approach:

- Extract dates and terms from unstructured text
- Construct a bipartite date-term graph
- Allows ranking dates / terms according to co-occurrences

Benefits:

- Simple measures already yield good results
- Efficient: 4GB Memory and real-time queries
- Flexibility of ranking methods

Ongoing Work

Query: "2016-05"

	ω
Multi-partite graphs:	1
Dates	
Persons	
Locations	2
Terms as n-Grams	2
Ranking-Functions	3

Thank you!

Questions?

